If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9t^2-24.5t+4.9=0
a = 4.9; b = -24.5; c = +4.9;
Δ = b2-4ac
Δ = -24.52-4·4.9·4.9
Δ = 504.21
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24.5)-\sqrt{504.21}}{2*4.9}=\frac{24.5-\sqrt{504.21}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24.5)+\sqrt{504.21}}{2*4.9}=\frac{24.5+\sqrt{504.21}}{9.8} $
| 1(x-4)=-12 | | 15r=74 | | 20q=96 | | 20p=160 | | 14i=42 | | 7^y+5=12 | | u+5=2u+1 | | 4x-85+x=180 | | 133−6x=5x-10 | | 2/(3y)+528=650 | | 133−6x=4x-18+x+8 | | 6x+2-3=15 | | 2/(3x)=122 | | x-(-5=-12 | | 7=g/2-12= | | -5+5(5b+3)=66+3(4b+3) | | v+2=10v-7 | | 0=y-50-0.6y | | 9x+9x+3x=21 | | H(x)=7x+x2 | | |4-x|-|x+2|=0 | | (13x)7=546 | | 2+z=6z2 | | 2-3m+9-4=10-3-53-18m | | F(×)=3x^2+6x-4 | | -8+(-15)=x | | -8-15=x | | 5(2x-2)-4=9x-11 | | 4(3^(x+1))-3^2x=27 | | -4(-2y+-8)=0 | | 2/5(15a-10)=14 | | 3+1.6x=0,1x |